Advanced forms of machine intelligence are already critical to fighting the pandemic, and they'll be increasingly vital in combatting infectious disease in the future. By Babak Hodjat, Brian Williams and Bret Greenstein
Great challenges require great tools. And in a world where a virus such as SARS-CoV-2 has had a huge global impact in just a matter of months, its complexity and speed require new methods for finding solutions. Advanced forms of artificial intelligence (AI) are already playing a critical role in our pandemic-fighting efforts, and they’re expected to play an increasingly vital role in the war against infectious disease in the future.
We see AI advancing our infectious disease fighting capabilities across the following dimensions:
Whatever contribution AI ultimately makes in the quest for a COVID-19 treatment or cure, machine intelligence is increasingly playing key roles throughout the global pharma R&D ecosystem, from molecule discovery through vaccine trial subject choices, as well as health predictions. Meanwhile, Evolutionary AI (an advanced form of machine intelligence) is poised to fulfill AI’s promise as an essential adjunct in analysis, comprehension and decision making for life sciences and healthcare organizations. Evolutionary AI gives researchers a tool to dynamically model therapies, treatments and disease progression. This approach not only improves prediction accuracy but also informs and enhances decision making by offering a broader range of options (including probability of success, next-best options, etc.) and a more nuanced understanding of whatever is being studied. Because of these capabilities, Evolutionary AI promises models that can be built on-demand with greater precision using real-time data and fewer data scientists. Unlike current models that are either static or require constant tuning, which renders them less capable of contending with novel disease strains, Evolutionary AI models can be improved or adapted over time. While data requirements render linear programming models and even deep-learning neural networks inadequate for modeling the outbreak of today’s novel coronavirus, Evolutionary AI applies algorithms to adapt models to changing conditions and objectives. By continuously generating the best decision strategy against a data-driven predictive surrogate, models can be evolved to increase accuracy and to adapt and improve over time as new data emerges.
Within the dimensions defined above, numerous specific applications of Evolutionary AI are becoming available. Here are some key ones:
While AI is not a panacea, we are learning how to wield it for the benefit of science, for the benefit of medicine and for the benefit of societal response and success in mitigating the effects of pandemics arising from infectious diseases.
Life sciences companies are increasing or maintaining their AI investments. Many new machine intelligence projects are brewing, and older ones are being remodeled. However, these investments and their potential public health benefits need to fit within an evolving societal debate on privacy and surveillance issues. Despite privacy and bias concerns, AI remains a bright star in the life sciences firmament. A COVID-19 vaccine might yet be months or years away, if one is successfully developed at all. But AI is here and now, and in conjunction with unprecedented international cooperation for data-sharing and more, there is hope that a treatment for COVID-19 is possible. What we learn in the fight against COVID-19 will prepare us for the infectious diseases that await us.
This article was written by Babak Hodjat, Vice President of Evolutionary AI at Cognizant, Brian Williams, Cognizant’s Chief Digital Officer for Life Sciences, and Bret Greenstein, SVP and Global Markets Head of AI & Analytics. Read more about Babak, Brian and Bret.